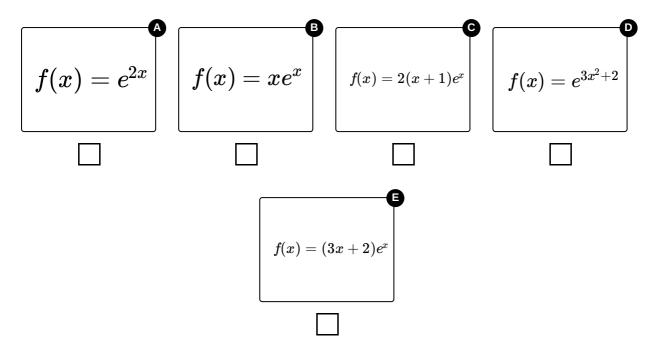


Arbeitsblätter zum Ausdrucken von sofatutor.com

Zusammengesetzte e-Funktionen ableiten

1	Gib an, in welchen Fällen die Ableitung mit der Produktregel gebildet wird.
2	Benenne die Regel, die für die Ableitung der Funktion benötigt wird.
3	Beschreibe das Vorgehen bei der Ableitung zusammengesetzter e -Funktionen.
4	Bestimme die Ableitungen der $\emph{e} ext{-}$ Funktionen.
5	Berechne die Ableitung der gegebenen Exponentialfunktion.
6	Ermittle, welche Funktionen die angegebene Ableitung besitzen.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben



Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege gibt es für alle Abonnenten von sofatutor.com

Gib an, in welchen Fällen die Ableitung mit der Produktregel gebildet wird.

Wähle alle Funktionen aus, die mit der Produktregel abgeleitet werden.

Unsere Tipps für die Aufgaben

Gib an, in welchen Fällen die Ableitung mit der Produktregel gebildet wird.

1. Tipp

Die Produktregel funktioniert für eine Funktion
$$f(x)=u(x)\cdot v(x)$$
 folgendermaßen: $f'(x)=u'(x)\cdot v(x)+u(x)\cdot v'(x)$

2. Tipp

Beispiel:
$$f(x) = 2x \cdot e^x$$

$$u(x) = 2x \quad ext{mit} \quad u'(x) = 2 \ v(x) = e^x \quad ext{mit} \quad v'(x) = e^x$$

$$ightarrow f'(x) = 2 \cdot e^x + 2x \cdot e^x$$

Lösungen und Lösungswege für die Aufgaben

Gib an, in welchen Fällen die Ableitung mit der Produktregel gebildet wird.

Lösungsschlüssel: B, C, E

Die Produktregel wenden wir an, wenn wir ein Produkt von zwei Funktionen vorliegen haben. Das bedeutet, bei beiden Faktoren muss die Variable x vorkommen.

Die allgemeine Produktregel lautet folgendermaßen:

$$f(x) = u(x) \cdot v(x) \quad o \quad f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

Beispiel: $f(x) = 2x \cdot e^x$

$$u(x)=2x$$
 mit $u'(x)=2$ $v(x)=e^x$ mit $v'(x)=e^x$

$$ightarrow f'(x) = 2 \cdot e^x + 2x \cdot e^x$$

Bei folgenden Funktionen kannst du direkt die Produktregel anwenden:

$$ullet f(x) = xe^x = \underbrace{x}_{u(x)} \cdot \underbrace{e^x}_{v(x)}$$

•
$$f(x) = 2(x+1)e^x = \underbrace{2(x+1)}_{u(x)} \cdot \underbrace{e^x}_{v(x)}$$

•
$$f(x)=(3x+2)e^x=\underbrace{(3x+2)}_{u(x)}\cdot\underbrace{e^x}_{v(x)}$$

Bei folgenden Funktionen kannst du **nicht** direkt die Produktregel anwenden:

•
$$f(x) = e^{2x}$$

Hier müssen wir die Kettenregel anwenden.

•
$$f(x) = e^{3x^2+2}$$

Auch hier müssen wir die Kettenregel anwenden.

