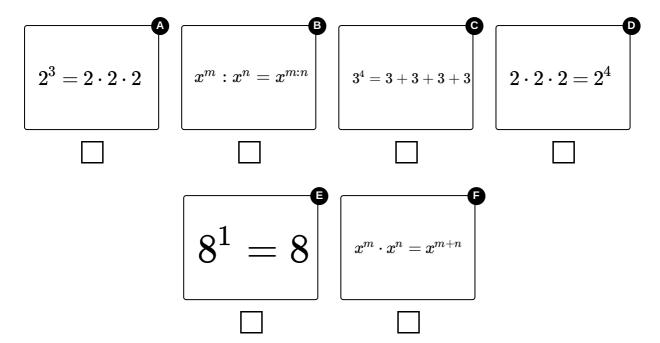


Arbeitsblätter zum Ausdrucken von sofatutor.com

Multiplikation und Division von Potenzen -Herleitung



Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege

Gib die korrekten Umformungen der Potenzen wieder.

Wähle die korrekten Gleichungen aus.

Unsere Tipps für die Aufgaben

Gib die korrekten Umformungen der Potenzen wieder.

1. Tipp

Die zweite Potenz einer Zahl x ist das Ergebnis einer Multiplikation dieser Zahl x mit sich selbst. Man schreibt dafür:

$$x^2 = x \cdot x$$

2. Tipp

Hier ist eine Beispielrechnung:

$$2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$$

Lösungen und Lösungswege für die Aufgaben

Gib die korrekten Umformungen der Potenzen wieder.

Lösungsschlüssel: A, E, F

Eine Potenz ist eine Zahl der Form x^m . Hierbei heißt x die Basis und m der Exponent. Du kannst die Werte einer Potenz ausrechnen, indem du die Basis mehrfach mit sich selbst malnimmst. Die Anzahl der Faktoren ist durch den Exponenten vorgegeben. Es ist also $x^1=x$ und $x^2=x\cdot x$ sowie $x^3=x\cdot x\cdot x$ usw.

Folgende Gleichungen sind richtig:

- $2^3 = 2 \cdot 2 \cdot 2$: Dies entspricht genau der Definition der dritten Potenz.
- $8^1 = 8$: Die erste Potenz jeder Zahl ist diese Zahl selbst.
- $x^m \cdot x^n = x^{m+n}$: Dies ist das allgemeine Potenzgesetz für die Multiplikation.

Folgende Gleichungen sind falsch:

- $x^m: x^n = x^{m:n}$: Bei dem Potenzgesetz der Division dividierst du die Exponenten nicht, sondern subtrahierst sie: $x^m: x^n = x^{m-n}$.
- $3^5 \neq 3+3+3+3+3$: Die Potenz einer Zahl steht für eine mehrfache **Multiplikation** und nicht **Addition** der Zahl mit sich selbst. Hier ist $3^5 = 3 \cdot 3 \cdot 3 \cdot 3 = 243 \neq 15 = 3+3+3+3+3+3$.
- $2 \cdot 2 \cdot 2 \neq 2^4$: Die linke Seite der Gleichung ist das dreifache Produkt der Zahl 2 mit sich selbst und daher identisch mit 2^3 und nicht mit 2^4 .

