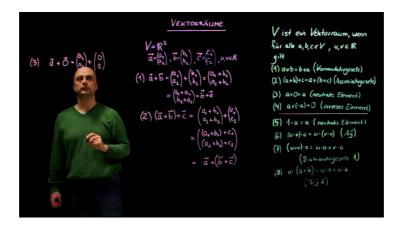


Arbeitsblätter zum Ausdrucken von sofatutor.com

Vektorräume – Beispiele



1	Beschreibe, wie das Kommutativgesetz sowie Assoziativgesetz der Addition im ${f R}^2$ nachgewiesen werden können.
2	Vervollständige den Nachweis des neutralen Elementes sowie des Assoziativgesetzes der Multiplikation im $\ensuremath{R^2}\xspace$.
3	Weise eines der beiden Distributivgesetze für R^2 nach.
4	Prüfe die folgenden Aussagen.
5	Entscheide, ob das Distributivgesetz auch im R^3 gilt.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege gibt es für alle Abonnenten von sofatutor.com

Beschreibe, wie das Kommutativgesetz sowie Assoziativgesetz der Addition im ${f R}^2$ nachgewiesen werden können.

Setze die fehlenden Begriffe oder Terme ein.

 $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$

Für zwei Vektoren im \mathbb{R}^2 ist die Addition so definiert wie hier zu sehen ist. Seien \vec{a} , \vec{b} und \vec{c} Vektoren im \mathbb{R}^2 .

Koordinate

$$a_2 + (b_2 + c_2)$$

$$oxed{a_2+(b_2+c_2)} oxed{a_1+(b_1+c_1)} oxed{ec a+(ec b+ec c)}$$

$$ec{a} + (ec{b} + ec{c})$$

Koordinate

addiert

$$b_1+a_1$$

$$ec{b} + ec{a}$$

Reihenfolge

$$b_2 + a_2$$

 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

Das Kommutativgesetz (Vertauschungsgesetz) der Addition besagt, dass die ______ bei der Addition vertauscht werden darf:

Der Nachweis wird für jede ________ des Vektors geführt.

- Für die erste Koordinate des Vektors $\vec{a} + \vec{b}$ gilt $a_1 + b_1 =$
- für die zweite Koordinate $a_2+b_2=$

Das bedeutet, dass $\vec{a} + \vec{b} =$ ist.

$$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$$

Das Assoziativgesetz der Addition besagt, dass sowohl von links nach rechts als auch von rechts nach links

_____<u>6</u> werden darf:

Der Nachweis wird für jede _______ des Vektors geführt.

- ullet für die zweite Koordinate $(a_2+b_2)+c_2=rac{9}{2}$.

Das bedeutet, dass $(ec{a}+ec{b})+ec{c}=$

Unsere Tipps für die Aufgaben

Beschreibe, wie das Kommutativgesetz sowie Assoziativgesetz der Addition im ${f R}^2$ nachgewiesen werden können.

1. Tipp

Verwende das Kommutativgesetz der Addition der reellen Zahlen: a+b=b+a.

2. Tipp

Verwende das Assoziativgesetz der Addition der reellen Zahlen: (a+b)+c=a+(b+c).

Lösungen und Lösungswege für die Aufgaben

Beschreibe, wie das Kommutativgesetz sowie Assoziativgesetz der Addition im ${f R}^2$ nachgewiesen werden können.

Lösungsschlüssel: 1: Reihenfolge // 2: Koordinate // 3: b_1+a_1 // 4: b_2+a_2 // 5: $\vec{b}+\vec{a}$ // 6: addiert // 7: Koordinate // 8: $a_1 + (b_1 + c_1)$ // 9: $a_2 + (b_2 + c_2)$ // 10: $\vec{a} + (\vec{b} + \vec{c})$

$$\left(egin{array}{c} a_1 \ a_2 \end{array}
ight) + \left(egin{array}{c} b_1 \ b_2 \end{array}
ight) = \left(egin{array}{c} a_1 + b_1 \ a_2 + b_2 \end{array}
ight)$$

Alle Vektorraumeigenschaften mit der hier erklärten Addition können Koordinate für Koordinate geführt werden.

Nun können in jeder Koordinate die Reihenfolge der Addition vertauscht werden:

$$\left(egin{aligned} a_1+b_1\ a_2+b_2 \end{aligned}
ight) = \left(egin{aligned} b_1+a_1\ b_2+a_2 \end{aligned}
ight) = \left(egin{aligned} b_1\ b_2 \end{matrix}
ight) + \left(egin{aligned} a_1\ a_2 \end{matrix}
ight).$$

Auf der rechten Seite steht die Summe der beiden Vektoren $\vec{b} + \vec{a}$.

Das Assoziativgesetz $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$

$$(\vec{a}+\vec{b})+\vec{c}=\left(\left(egin{array}{c}a_1\a_2\end{array}
ight)+\left(egin{array}{c}b_1\b_2\end{array}
ight)+\left(egin{array}{c}c_1\c_2\end{array}
ight)=\left(\left(a_1+b_1
ight)+c_1\a_2+b_2
ight)+c_2\end{array}
ight).$$

Nun kann in jeder Koordinate das Assoziativgesetz der Addition der reellen Zahlen angewendet werden:

$$\begin{pmatrix}
(a_1 + b_1) + c_1 \\
(a_2 + b_2) + c_2
\end{pmatrix} = \begin{pmatrix}
a_1 + (b_1 + c_1) \\
a_2 + (b_2 + c_2)
\end{pmatrix}$$

$$= \begin{pmatrix}
a_1 \\
a_2
\end{pmatrix} + \begin{pmatrix}
b_1 \\
b_2
\end{pmatrix} + \begin{pmatrix}
c_1 \\
c_2
\end{pmatrix}
)$$

$$= \vec{a} + (\vec{b} + \vec{c})$$

Damit ist das Assoziativgesetz nachgewiesen.

