Printable Worksheets from sofatutor.com

# **Scatter plots**







The complete package, **including all problems**, **hints**, **answers**, **and detailed answer explanations** is available for all sofatutor.com subscribers.



# Determine the slope-intercept form of the line of best fit.

Choose the correct formula.



This diagram shows the impact of DJ's popularity rating (x-axis) on the number of guests attending (y-axis).

The yellow points on the line represent a DJ with a  $50\,\%$  popularity rating having  $200\,$  guests in attendance, and one with  $80\,\%$  popularity leads to  $350\,$  guests.



$$y = 50x + 200$$

$$y=5x-50$$

$$y = 5x + 200$$

$$y=80x+350$$

$$y=5x-80$$

## Hints for solving these problems



## Determine the slope-intercept form of the line of best fit.

#### Hint #1

$$m=rac{y_2-y_1}{x_2-x_1}$$

Use this formula to find the slope.

#### Hint #2

Use the slope-intercept form of a line (y = mx + b) to find the b term by plugging in either point as x and y.

#### Hint #3

"DJ with a 50% popularity rating has 200 guests in attendance" can be represented by the ordered pair (50,200).

### Hint #4

"DJ with 80% popularity leads to 350 guests" can be represented with the ordered pair (80,350).

#### Hint #5

(50,200) this point gives us  $x_1=50$  and  $y_1=200$ .

(80,350) this point gives us  $x_2=80$  and  $y_2=350$ .



### Answers and detailed answer explanations for these problems



## Determine the slope-intercept form of the line of best fit.

### **Answer key:** C



Any linear equation can be expressed in slope intercept form as y=mx+b.

1. We first determine the slope  $\,m$  by the formula:

• 
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
.

- So we need two points. Those are given by the information of the impact of 50% (80%) popularity rating on the number of guests 200 (350).
- ullet So we have two points (50,200) and (80,350). Now we put the coordinates of those points in the formula above to get

•  $m = \frac{350 - 200}{80 - 50} = \frac{150}{30} = 5.$ 

2. This gives us y=5x+b with an unknown y-intercept. Last we put the coordinates of one point into this equation. We picked to use the point (50,200) and it looks like:

• 200 = 5(50) + b.

• Subtracting 250 results in the y-intercept b = 200 - 250 = -50.

3. So, the linear equation is y = 5x - 50.

