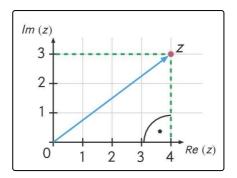


Arbeitsblätter zum Ausdrucken von sofatutor.com

Komplexe Zahlen – Betrag, Multiplikation und Division

Das komplette Paket, **inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege** gibt es für alle Abonnenten von sofatutor.com



Gib den Betrag von z=4+3i an.

Trage die Lösung in die Lücke ein.

Multiplikation und Division

Unsere Tipps für die Aufgaben

Gib den Betrag von z=4+3i an.

1. Tipp

Der Betrag einer komplexen Zahl z wird berechnet durch: $|z| = \sqrt{z \cdot \overline{z}}$

2. Tipp

Die komplex konjugierte Zahl von z = a + bi ist $\bar{z} = a - bi$.

3. Tipp

Anhand der Zeichnung kannst du erkennen, dass der gesuchte Betrag von z der Hypotenuse im rechtwinkligen Dreieck entspricht. Welche Formel können wir dann alternativ anwenden?

4. Tipp

Der Satz des Pythagoras lautet: $a^2+b^2=c^2$, wobei c die Hypotenuse im rechtwinkligen Dreieck ist.

Lösungen und Lösungswege für die Aufgaben

Gib den Betrag von z=4+3i an.

Lösungsschlüssel: 5

Wir können die Formel für den Betrag von komplexen Zahlen anwenden, welche lautet:

$$|z| = \sqrt{z \cdot \overline{z}}$$
.

Die komplex konjugierte Zahl von z=4+3i ist $\overline{z}=4-3i$

Wir setzen dies in die Formel ein und berechnen den Betrag durch die Anwendung der dritten binomischen Formel:

$$|z| = \sqrt{(4+3i)\cdot(4-3i)} = \sqrt{16-(-9)} = \sqrt{16+9} = \sqrt{25} = 5.$$

Der Abstand von $\,z=4+3i\,$ zum Nullpunkt beträgt also 5 LE.

