Printable Worksheets from sofatutor.com

Exponential Growth and Decay

The complete package, **including all problems**, **hints**, **answers**, **and detailed answer explanations** is available for all sofatutor.com subscribers.

Establish the formula for Bevo's shrinking horns.

Choose the correct formula.

Oh no, Bevo's horns are so tiny!

Bevo's horns were originally 49 feet tall, and their decay rate is ~37% .

The equation for exponential decay is given by $\,x_t = x_0 imes (1-r)^{\left(rac{t}{10}
ight)}$

$x_t = 49 imes (1+0.37)^{\left(rac{t}{10} ight)}$

$$oxed{ \qquad \qquad } x_t = 37 imes (1-0.49)^{\left(rac{t}{10}
ight)}$$

$$oxed{ x_t = 49 imes 0.63^{\left(rac{t}{10}
ight)}}$$

Hints for solving these problems

Establish the formula for Bevo's shrinking horns.

Hint #1

What's the meaning of the terms in the formula?

- $\frac{t}{n}$ is the decaying time by one decay factor in days.
- x_t is the size after t days.
- ullet x_0 is the original size, the starting size.

Hint #2

Keep in mind that you have to subtract the decay rate from 1.

Hint #3

Distinguish between the original size, that's the size at the beginning, and the size at t, which must be smaller than the original size.

Answers and detailed answer explanations for these problems

Establish the formula for Bevo's shrinking horns.

Answer key: C, E

$$x_t = x_0 imes (1-r)^{\left(rac{t}{10}
ight)}$$

We already know the formula for exponential decay,

$$x_t = x_0 imes (1-r)^{\left(rac{t}{10}
ight)}$$
 , so all we need to do is put in our known values.

The original size of the horns is 49 feet, so $\,x_0=49.\,$

The size at t is unknown.

To get the decay factor we have to subtract the rate $\,r=0.37$ from $\,1\,$

to get 1 - 0.37 = 0.63.

Putting all these values into the exponential decay equation, we get:

$$x_t = 49 imes (1-0.37)^{\left(rac{t}{10}
ight)} \, = 49 imes 0.63^{\left(rac{t}{10}
ight)}$$
 .

