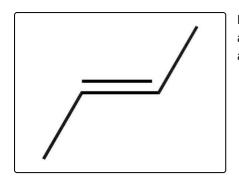


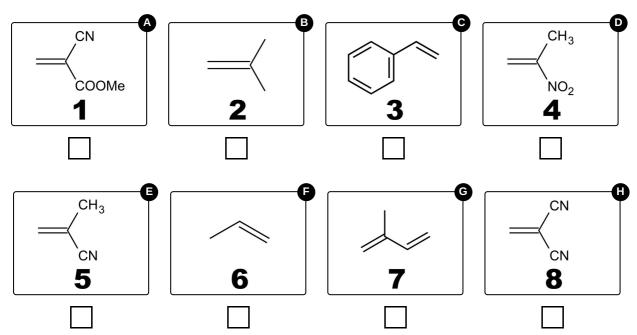
Arbeitsblätter zum Ausdrucken von sofatutor.com

Anionische Polymerisation

(1)	Bestimme die geeigneten Monomere für eine anionische Polymerisation
2	Beschreibe die Reaktionsschritte der anionischen Polymerisation.
3	Bestimme geeignete Basen für die anionische Polymerisation.
4	Erkläre die Begriffe Initiator und Katalysator.
5	Unterscheide zwischen verschiedenen Herstellungsweisen.
6	Ermittle die Eigenschaften von PMMA und POM.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege





Bestimme die geeigneten Monomere für eine anionische Polymerisation

Wähle die geeigneten Monomere aus.

Bei But-2-en handelt es sich um eine chemische Verbindung, die nicht für die anionische Polymerisation geeignet ist. Finde alle Monomere, mit denen die anionische Polymerisation glatt verläuft.

Unsere Tipps für die Aufgaben

Bestimme die geeigneten Monomere für eine anionische Polymerisation

1. Tipp

In der *Skelettschreibweise* bedeutet = nicht nur die Doppelbildung oder Ethen, sondern auch ein Ethen-Gerüst mit Substituenten.

2. Tipp

Der einfache Strich - an der Doppelbindung symbolisiert die Methyl-Gruppe CH_3 --

3. Tipp

Nur bestimmte Gruppen an der Doppelbindung = ermöglichen die anionische Polymerisation.

Lösungen und Lösungswege für die Aufgaben

Bestimme die geeigneten Monomere für eine anionische Polymerisation

Lösungsschlüssel: A, D, E, H

Das Auswahlkriterium ist relativ einfach: Nur elektronenziehende Reste (Gruppen) an der Doppelbindung (-I-Effekt) ermöglichen die anionische Polymerisation.

- 1. Monomer: Sowohl die Cyano-Gruppe -CN als auch die Ester-Gruppe -COOMe (Me = Methyl) ziehen kräftig Elektronen.
- 2. Monomer: Die beiden Methyl-Gruppen $\,C\!H_3-\,$ ziehen keine Elektronen.
- 3. Monomer: Es handelt sich um Toluol. Das ist eine relativ unpolare Verbindung. Die Phenyl-Gruppe C_6H_5- zieht keine Elektronen.
- 4. Monomer: Die Nitro-Gruppe NO_2- zieht kräftig Elektronen.
- 5. Monomer: Die Cyano-Gruppe -CN zieht kräftig Elektronen.
- 6. Monomer: Es handelt sich um Propen (Propylen). Das ist eine relativ unpolare Verbindung. Die Methyl-Gruppe CH_3- zieht keine Elektronen.
- 7. Monomer: Es handelt sich um *Isopren*. Die unpolare Verbindung zieht keine Elektronen.
- 8. Monomer: Die beiden Cyano-Gruppen -CN ziehen kräftig Elektronen.

