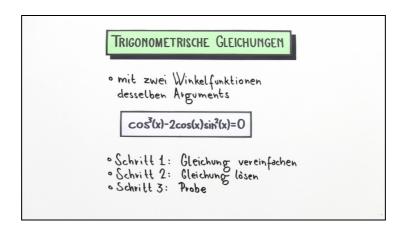


Arbeitsblätter zum Ausdrucken von sofatutor.com

Gleichungen mit Sinus, Cosinus und Tangens mit zwei Winkelfunktionen desselben Arguments



(1)	Gib an, welche der folgenden Sätze korrekt sind.
2	Stelle einige Gesetzmäßigkeiten von Winkelfunktionen dar, die zur Lösung unserer Gleichung benötigt werden.
3	Bestimme die Lösungen der angegebenen trigonometrischen Gleichung.
4	Erschließe dir den Lösungsweg zur gegebenen trigonometrischen Gleichung.
5	Ermittle die Nullstellen der Funktion $f(x) = \sin(x) - \cos(x)$
6	Entscheide, welche der folgenden Aussagen korrekt sind.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, **inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege** gibt es für alle Abonnenten von sofatutor.com

Gib an, welche der folgenden Sätze korrekt sind.

Wähle dafür die richtigen Aussagen aus.

- Aus der Gleichung $\sin^2(x) + \cos^2(x) = 1$ kann $\max \cos^2(x) = 1 \sin^2(x)$ oder $\sin^2(x) = 1 \cos^2(x)$ folgern.
- Die Lösungen der Gleichung $\cos(x)=0$ ergeben sich aus $x_k=(k+1)\cdot 90\degree$ mit $k\in \mathsf{Z}.$
- Man kann $\cos(x)$ aus dem Term $\cos^3(x) 2\cos(x) \cdot \sin^2(x)$ ausklammern.
- $igsqcup = rac{\cos(x)}{\sin(x)} = an(x)$.
- igsquare Es gilt die Äquivalenz: $rac{1}{3}=\sin^2(x)\iff \pm\sqrt{rac{1}{3}}=\sin(x)$.

Unsere Tipps für die Aufgaben

Gib an, welche der folgenden Sätze korrekt sind.

1. Tipp

Es ist $x^2+y^2=1$ äquivalent zu $y^2=1-x^2$ oder $x^2=1-y^2$.

2. Tipp

Es gilt $\cos(180\degree)=-1\neq 0$, weshalb $180\degree$ keine Lösung der Gleichung $\cos(x)=0$ ist.

3. Tipp

Der Tangens ist an der Stelle 0° definiert, denn es ist $\tan(0^\circ)=0$. Demzufolge müsste das auch für den Quotienten $\frac{\cos(x)}{\sin(x)}$ zutreffen. Tut es das auch?

Lösungen und Lösungswege für die Aufgaben

Gib an, welche der folgenden Sätze korrekt sind.

Lösungsschlüssel: A, C, E

Wir betrachten jede Aussage separat.

1. Aus der Gleichung
$$\sin^2(x)+\cos^2(x)=1$$
 kann man $\cos^2(x)=1-\sin^2(x)$ oder $\sin^2(x)=1-\cos^2(x)$ folgern.

Diese Aussage ist wahr, denn es handelt sich hierbei lediglich um Äquivalenzumformungen, d.h. es gilt

$$\sin^2(x)+\cos^2(x)=1 \quad \stackrel{-\sin^2(x)}{\Leftrightarrow} \quad \cos^2(x)=1-\sin^2(x)$$

oder

$$\sin^2(x) + \cos^2(x) = 1 \quad \stackrel{-\cos^2(x)}{\Leftrightarrow} \quad \sin^2(x) = 1 - \cos^2(x)$$

2. Die Lösungen der Gleichung $\cos(x)=0$ ergeben sich aus $x_k=(k+1)\cdot 90\degree$ mit $k\in \mathsf{Z}$.

Wir betrachten hierfür $x_1=(1+1)\cdot 90^\circ=2\cdot 90^\circ=180^\circ$. Es gilt nun $\cos(180^\circ)=-1\neq 0$, weshalb diese Aussage **falsch** ist.

3. Man kann $\cos(x)$ aus dem Term $\cos^3(x) - 2\cos(x) \cdot \sin^2(x)$ ausklammern.

Es gilt $\cos^3(x) - 2\cos(x) \cdot \sin^2(x) = \cos(x) \cdot \left(\cos^2(x) - 2\sin(x)\right)$ weshalb man $\cos(x)$ ausklammern kann und diese Aussage damit **wahr** ist.

4. Es gilt
$$\frac{\cos(x)}{\sin(x)} = \tan(x)$$
.

Wir wissen, dass $an(0^\circ) = 0$ ist. Damit würde

$$0 = \tan(0^{\circ}) = \frac{\cos(0^{\circ})}{\sin(0^{\circ})} = \frac{1}{0}$$

folgen, was nicht möglich ist, da man durch die Zahl Null nicht teilen kann. Die Gleichung wäre damit nicht erfüllt, womit die Aussage **falsch** ist.

5. Es gilt die Äquivalenz:
$$rac{1}{3}=\sin^2(x) \iff \pm \sqrt{rac{1}{3}}=\sin(x)$$
.

Die Gleichung $\frac{1}{3}=\sin^2(x)$ besitzt aufgrund des Quadrates zwei Lösungen, eine positive und eine negative Lösung. Zieht man also auf beiden Seiten der Gleichung die Wurzel, dann erhält man gerade $\pm \sqrt{\frac{1}{3}}=\sin(x)$.

Aus der Gleichung $\pm \sqrt{\frac{1}{3}} = \sin(x)$ erhält man andersherum durch Quadrieren auf beiden Seiten die Gleichung $\frac{1}{3} = \sin^2(x)$.

Die Äquivalenz gilt damit und die Aussage ist wahr.

