

Arbeitsblätter zum Ausdrucken von sofatutor.com

Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis

(1)	Gib den Beweis des Additionssatzes $\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)+\sin(\alpha)\cdot\sin(\beta)$ wieder.
2	Gib die beiden Additionssätze für den Kosinus an.
3	Berechne $\cos(75^\circ)$ mit Hilfe des Additionssatzes $\cos(\alpha+\beta)=\cos(\alpha)\cdot\cos(\beta)-\sin(\alpha)\cdot\sin(\beta)$.
4	Begründe den trigonometrischen Pythagoras $\sin^2(\alpha) + \cos^2(\alpha) = 1$ mit einem Additionssatz.
5	Leite eine Formel für $\cos(2\cdot\alpha)$ her.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, **inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege** gibt es für alle Abonnenten von sofatutor.com

Arbeitsblatt: Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis

Mathematik / Terme und Gleichungen / Trigonometrische Gleichungen / Additionstheoreme für sin(x+y) und cos(x+y) / Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis

D

Gib den Beweis des Additionssatzes

$$\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)+\sin(\alpha)\cdot\sin(\beta)$$
 wieder.

Bringe die einzelnen Schritte in die richtige Reihenfolge.

Wir wollen den Kosinussatz für $\cos(\alpha-\beta)$ mit der Formel für $\cos(\alpha+\beta)$ herleiten.

Unter Verwendung der Symmetrien

- des Sinus: $\sin(-\alpha) = -\sin(\alpha)$ sowie
- des Kosinus: $\cos(-\alpha) = \cos(\alpha)$ erhält man

Es gilt der Additionssatz $\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$.

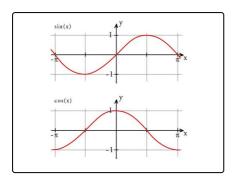
Somit ist der Additionssatz bewiesen: $\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)+\sin(\alpha)\cdot\sin(\beta)$.

Damit ist $\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(-\beta)-\sin(\alpha)\cdot\sin(-\beta)$.

 $\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)-\sin(\alpha)\cdot(-\sin(\beta)).$

RICHTIGE REIHENFOLGE

Mathematik/Terme und Gleichungen/Trigonometrische Gleichungen/Additionstheoreme für sin(x+y) und cos(x+y)/Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis


Unsere Tipps für die Aufgaben

Gib den Beweis des Additionssatzes

$$\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)+\sin(\alpha)\cdot\sin(\beta)$$
 wieder.

1. Tipp

Die Sinusfunktion ist punktsymmetrisch zum Koordinatenursprung.

Die Kosinusfunktion ist achsensymmetrisch zur y-Achse.

2. Tipp

Ersetze in der bekannten Formel für $\cos(\alpha + \beta)$ den Winkel β durch $-\beta$.

Mathematik/Terme und Gleichungen/Trigonometrische Gleichungen/Additionstheoreme für sin(x+y) und cos(x+y)/Additionssätze cos(a+b) und cos(a-b) – Herleitung und Beweis

Lösungen und Lösungswege für die Aufgaben

Gib den Beweis des Additionssatzes

$$\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)+\sin(\alpha)\cdot\sin(\beta)$$
 wieder.

Lösungsschlüssel: B, D, A, E, C

Zum Nachweis des Additionssatzes $\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)+\sin(\alpha)\cdot\sin(\beta)$ wird der Additionssatz $\cos(\alpha+\beta)=\cos(\alpha)\cdot\cos(\beta)-\sin(\alpha)\cdot\sin(\beta)$ verwendet.

Zusätzlich benötigt man Symmetrieeigenschaften

- des Sinus: $\sin(-\alpha) = -\sin(\alpha)$, d.h. die Sinusfunktion ist punktsymmetrisch zum Koordinatenursprung.
- des Kosinus: $\cos(-\alpha) = \cos(\alpha)$, d.h. die Kosinusfunktion ist achsensymmetrisch zur y-Achse. Wir berechnen:

$$\begin{split} \cos(\alpha - \beta) &= \cos(\alpha) \cdot \cos(-\beta) - \sin(\alpha) \cdot \sin(-\beta) \\ &= \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot (-\sin(\beta)) \\ &= \cos(\alpha) \cdot \cos(\beta) + \sin(\alpha) \cdot \sin(\beta). \end{split}$$

