

Arbeitsblätter zum Ausdrucken von sofatutor.com

Polysaccharide - Cellulose, Stärke, Glykogen

(1)	Bestimme die Konfiguration der D-Glucopyranose.
2	Beschreibe die Unterschiede zwischen Stärke und Glykogen.
3	Benenne die Polysaccharide.
4	Charakterisiere den Bindungsmodus im Glykogen.
5	Bestimme die Abbauprodukte zu den folgenden Polysacchariden.
6	Erkläre den Vorteil von Glykogen als Energiespeicher im menschlichen Organismus.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege

Bestimme die Konfiguration der D-Glucopyranose.

Schreibe die richtigen Bezeichnungen in die Lücken.

 $oldsymbol{eta}$ -D-Glucopyranose

 $oldsymbol{eta}$ -D-Glucopyranose

lpha-D-Glucopyranose

lpha-D-Glucopyranose

Unsere Tipps für die Aufgaben

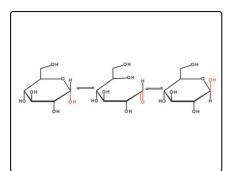
Bestimme die Konfiguration der D-Glucopyranose.

1. Tipp

Die α - und β -Notation bezieht sich auf die Stellung der OH-Gruppe am ersten Kohlenstoffatom.

2. Tipp

lpha: 1R; $oldsymbol{eta}$: 1S



Lösungen und Lösungswege für die Aufgaben

Bestimme die Konfiguration der D-Glucopyranose.

Lösungsschlüssel: 1: α -D-Glucopyranose // 2: α -D-Glucopyranose // 3: β -D-Glucopyranose // 4: β -D-Glucopyranose

Durch den Ringschluss entsteht am C^1 -Atom ein zusätzliches chirales Zentrum. Dieses kann in R- oder in S-Konformation vorliegen, dementsprechend gibt es zwei unterschiedliche D-Glucopyranosen. Auch die daraus aufgebauten Polysaccharide zeigen unterschiedliche chemische Eigenschaften.

Liegt das erste Kohlenstoffatom in R-Konformation vor, spricht man von der α -Form der D-Glucopyranose, liegt es in S-Konformation vor, nennt man die Verbindung β -D-Glucopyranose. Meist kürzt

man die Namen aber mit α - bzw. β -D-Glucose ab. Zwischen beiden Formen liegt ein Gleichgewicht vor, im Gleichgewicht ist die Konzentration der β -Form höher.

Aus den Regeln für die Harworth-Darstellung von Kohlenhydraten ist die Konformation des C^1 -Atoms klar ersichtlich. Zeigt die OH—Gruppe nach oben, handelt es sich um die β -Form, zeigt sie nach unten, ist es die α -Form. In der Darstellung in Sesselform entspricht die β -Form einer äquatorialen Stellung der OH—Gruppe und die α -Form der axialen Stellung.

