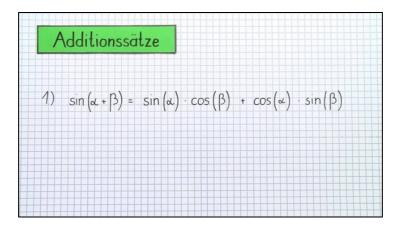


Arbeitsblätter zum Ausdrucken von sofatutor.com

Additionssätze sin(a+b) und sin(a-b) – Herleitung und Beweis



1	Vervollständige den Beweis des Additionssatzes $\sin(\alpha-\beta)=\sin(\alpha)\cdot\cos(\beta)-\cos(\alpha)\cdot\sin(\beta)$
2	Gib den Sinussatz an.
3	Ergänze den Beweis des Additionssatzes $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta)$.
4	Berechne den Sinuswert von 135° .
5	Leite mit einem Additionssatz her, dass $\sin(180^\circ-\alpha)=\sin(\alpha)$ gilt.
6	Stelle mit Hilfe eines Additionssatzes eine Formel für $\sin(2\alpha)$ auf.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, **inkl. aller Aufgaben**, **Tipps**, **Lösungen und Lösungswege** gibt es für alle Abonnenten von sofatutor.com

Vervollständige den Beweis des Additionssatzes

$$\sin(\alpha - \beta) = \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta)$$
.

Setze die fehlenden Begriffe oder Terme in die Lücken ein.

punktsymmetrisch y-Achse x-Achse $-\alpha$ $-\beta$ $-\cos(\beta)$ $\cos(\beta)$

 $-\sin(eta)$ Koordinatenursprung $\sin(eta)$ $-\sin(lpha)$ achsensymmetrisch

 $\left(egin{array}{c} oldsymbol{1} \end{array}
ight)$ Es gilt der Additionssatz:

 $\sin(\alpha+\beta) = \sin(\alpha)\cdot\cos(\beta) + \cos(\alpha)\cdot\sin(\beta).$

Nun ersetzen wir in diesem Satz β durch ______ und erhalten:

 $\sin(\alpha + (-\beta)) = \sin(\alpha) \cdot \cos(-\beta) + \cos(\alpha) \cdot \sin(-\beta).$

Da die Kosinusfunktion _____ zur _____ ist und somit $\cos(-\beta)$ =

gilt, und weil die Sinusfunktion

s zum

und somit $\sin(-\beta)=$ ________ gilt, simmt folgende Gleichnung:

 $\sin(\alpha-\beta) = \sin(\alpha)\cdot\cos(\beta) - \cos(\alpha)\cdot\sin(\beta)$

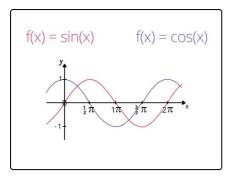
Mathematik / Terme und Gleichungen / Trigonometrische Gleichungen / Additionstheoreme für sin(x+y) und cos(x+y) / Additionssätze sin(a+b) und sin(a-b) – Herleitung und Beweis

Unsere Tipps für die Aufgaben

Vervollständige den Beweis des Additionssatzes

$$\sin(\alpha-\beta)=\sin(\alpha)\cdot\cos(\beta)-\cos(\alpha)\cdot\sin(\beta).$$

1. Tipp



Schau dir den Verlauf der Sinus- und Kosinusfunktion an.

2. Tipp

Wenn eine Funktion achsensymmetrisch ist, zu welcher Achse ist sie dann symmetrisch?

Mathematik / Terme und Gleichungen / Trigonometrische Gleichungen / Additionstheoreme für sin(x+y) und cos(x+y) / Additionssätze sin(a+b) und sin(a-b) – Herleitung und Beweis

Lösungen und Lösungswege für die Aufgaben

Vervollständige den Beweis des Additionssatzes

$$\sin(\alpha - \beta) = \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta).$$

Lösungsschlüssel: 1: $-\beta$ // 2: achsensymmetrisch // 3: y-Achse // 4: $\cos(\beta)$ // 5: punktsymmetrisch // 6: Koordinatenursprung // 7: $-\sin(\beta)$

Es wird der Additionssatz

$$\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$$

verwendet. Um den Satz für $\sin(\alpha-\beta)$ zu beweisen, wird in dem Additionssatz β durch $-\beta$ ersetzt.

$$\sin(\alpha + (-\beta)) = \sin(\alpha) \cdot \cos(-\beta) + \cos(\alpha) \cdot \sin(-\beta).$$

Es gilt:

- die Kosinusfunktion ist achsensymmetrisch zur y-Achse, das heißt $\cos(-\beta) = \cos(\beta)$, sowie
- ullet die Sinusfunktion ist punktsymmetrisch zum Koordinatenursprung, also $\sin(-eta) = -\sin(eta)$.

Wenn man diese beiden Eigenschaften verwendet, erhält man

$$\begin{aligned} \sin(\alpha + (-\beta)) &= \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot (-\sin(\beta)) \\ &= \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta). \end{aligned}$$

Dies ist der gesuchte Additionssatz.

