

Arbeitsblätter zum Ausdrucken von sofatutor.com

Induktionsspannung durch Feldänderung

(1)	Nenne die Definition für das allgemeine Induktionsgesetz.
2	Bestimme, welche Kurve den Spannungsverlauf am besten beschreibt.
3	Gib an, wie die Induktionsspule auf Ein- und Ausschalten der Feldspule reagiert.
4	Gib an, wie sich die Kurve verändert.
5	Bestimme, welche Stromkurven in der Feldspule welche Spannungen in der Induktionsspule hervorrufen.
6	Berechne die induzierten Spannungen.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege

Nenne die Definition für das allgemeine Induktionsgesetz.

Fülle die Lücken mit den richtigen Begriffen aus.

Induktion durch Feldänderung	Induktion durch Bewegung	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	der magnetische Fluss Φ	$oxedsymbol{Fläche}A$
$oxedsymbol{Stromstärke}\ I$ des Magnetfe	ldes der Spule Spannu	ung U_i
Sobald sich in einer Spule		durch die von
ihr umschlossene		ändert, so wird eine
	3 induziert. Die	ese Flussänderung kann durch
Bewegung	<u>4</u> 0	der durch Änderung
	5 erfolgen. Let	zteres nennt man auch
	6.	

Unsere Tipps für die Aufgaben

Nenne die Definition für das allgemeine Induktionsgesetz.

1. Tipp

Welche physikalische Größe kann induziert werden?

2. Tipp

Warum kann auch eine Spannung induziert werden, wenn sich die Spule nicht bewegt?

Lösungen und Lösungswege für die Aufgaben

Nenne die Definition für das allgemeine Induktionsgesetz.

Lösungsschlüssel: 1: der magnetische Fluss Φ // 2: Fläche A // 3: Spannung U_i // 4: der Spule // 5: des Magnetfeldes // 6: Induktion durch Feldänderung

Wenn sich in einer Spule der magnetische Fluss Φ durch die von ihr umschlossene Fläche A ändert, wird eine Spannung U_i induziert.

Die Formel dazu lautet:

$$U_i = -N \cdot rac{d oldsymbol{\Phi}}{dt}$$

Es wird immer nur eine Spannung induziert. Diese bewirkt dann einen elektrischen Strom, welchen man dann Induktionsstrom I_i nennt. Wenn wir also die Spule ruhig im homogenen Magnetfeld halten, wird keine Spannung induziert werden.

Um eine Spannung zu induzieren gibt es die folgenden Möglichkeiten. Es kann sich die vom Magnetfeld durchdrungene Fläche, die Stärke des Magnetfeldes oder die Orientierung des Magnetfeldes ändern.

Es ist also nicht unbedingt notwendig, die Spule zu bewegen, um eine Spannung zu induzieren. Dies ist z.B. auch möglich, indem man das Magnetfeld verändert. Zum Beispiel könnte man es mit einem Wechselspannungssignal erzeugen. Dadurch würde sich die Stärke und die Ausrichtung des Magnetfeldes stetig ändern. In diesem Fall würde demnach stetig eine Induktionsspannung durch die Feldänderung generiert werden.

