

Arbeitsblätter zum Ausdrucken von sofatutor.com

Energie einer stromdurchflossenen Spule

Herleitung oler Formel Sir Em

Die elektrische Leistung der Spale
$$P_{EI} = U_i(t) \cdot \underline{I}(t) = \frac{dE}{dt} | \underline{L} = \frac{U}{dI(t)}$$
 $P_{EI} = -\underline{L} \cdot \frac{dI(t)}{dt} \cdot \underline{I}(t)$ und $\frac{dE_m(t)}{dt} = -\frac{dE}{dt}$
 $\frac{dE_m(t)}{dt} = \underline{L} \cdot \frac{dI(t)}{dt} \cdot \underline{I}(t) \Longrightarrow E_m(t) = \frac{1}{2} \cdot \underline{L} \cdot \underline{I}(t)$

(1)	Gib an, wovon die magnetische Energie einer Spule abhängt.
2	Beschreibe, was passiert, wenn die Spannungsquelle entfernt wird.
3	Beschrifte die Formel der magnetischen Energie einer Spule.
4	Berechne die magnetische Energie einer Spule.
5	Leite die Formel für die magnetische Energie der Spule her.
6	Berechne, wie viel Energie frei wird, wenn die Stromstärke in der Spule auf die Hälfte abfällt.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege gibt es für alle Abonnenten von sofatutor.com

Gib an, wovon die magnetische Energie einer Spule abhängt.

Unsere Tipps für die Aufgaben

Gib an, wovon die magnetische Energie einer Spule abhängt.

1. Tipp

Stell dir einen Stromkreislauf mit einer Spule vor. Was könnte in dem Kreislauf verändert werden?

2. Tipp

Schau dir noch einmal die Formel für die magnetische Energie an.

Lösungen und Lösungswege für die Aufgaben

Gib an, wovon die magnetische Energie einer Spule abhängt.

Lösungsschlüssel: A, D

Sobald ein Strom durch eine Spule fließt, baut die Spule ein Magnetfeld auf. In diesem Magnetfeld ist eine Energie gespeichert.

Die Formel für die magnetische Energie ist:

$$E_m(t) = rac{1}{2} \cdot L \cdot I(t)^2$$

Die magnetische Energie hängt also von der Induktivität L der Spule und der Stromstärke I ab, die durch die Spule fließt.

In der Formel sehen wir außerdem, dass eine verdoppelte Stromstärke eine viermal so hohe magnetische Energie zur Folge hat.

