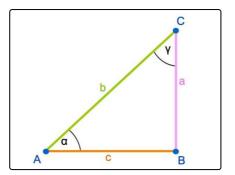


Arbeitsblätter zum Ausdrucken von sofatutor.com

Steigungswinkelproblem – Steigungswinkel in einem Punkt bestimmen

(1)	Definiere den Tangens von α und von γ .
2	Ergänze die Erklärung zum Steigungswinkel.
3	Berechne den Steigungswinkel der Funktion $f(x)$ an der Stelle $x_0=1$
4	Bestimme den Steigungswinkel der Funktionen an der jeweiligen Stelle $x_{\mathrm{0}}.$
5	Gib den Steigungswinkel der Funktion f an der Stelle x_0 an.
6	Gib den Bereich für x_0 an, in welchem ein Steigungswinkel $40^\circ < lpha < 45^\circ$ vorliegt.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben



Das komplette Paket, **inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege** gibt es für alle Abonnenten von sofatutor.com

Definiere den Tangens von α und von γ .

Trage deine Antwort in die Lücken ein.

Unsere Tipps für die Aufgaben

Definiere den Tangens von α und von γ .

1. Tipp

Es gilt

$$egin{aligned} sin(\pmb{lpha}) &= rac{ ext{Gegenkathete von }\pmb{lpha}}{ ext{Hypotenuse}} \ cos(\pmb{lpha}) &= rac{ ext{Ankathete von }\pmb{lpha}}{ ext{Hypotenuse}} \ tan(\pmb{lpha}) &= rac{sin(\pmb{lpha})}{cos(\pmb{lpha})}. \end{aligned}$$

2. Tipp

In einem rechtwinkligen Dreieck gibt es zwei Katheten und eine Hypotenuse. Die Hypotenuse ist die längste Seite in dem rechtwinkligen Dreieck. Sie liegt dem rechten Winkel gegenüber.

3. Tipp

Die beiden Winkel α und γ sind spitze Winkel ($< 90^{\circ}$).

Zu jedem dieser spitzen Winkel gibt es

- eine Gegenkathete, welche dem jeweiligen Winkel gegenüberliegt und
- eine Ankathete, die den jeweiligen Winkel mit der Hypotenuse bildet.

4. Tipp

Auf Verkehrsschildern wird bei besonders steilen Straßen die Steigung in "%" angegeben. Sie entspricht dem Verhältnis von vertikalem zu horizontalem Weg.

Lösungen und Lösungswege für die Aufgaben

Definiere den Tangens von α und von γ .

Lösungsschlüssel: 1: a/c // 2: c/a

Der Tangens eines spitzen Winkels in einem rechtwinkligen Dreieck ist das Verhältnis von der Länge der Gegenkathete zu der der Ankathete dieses Winkels. Abkürzend schreibt man

$$tan(\alpha) = rac{ ext{Gegenkathete von } lpha}{ ext{Ankathete von } lpha}.$$

In dem obigen Dreieck gilt daher $tan(\pmb{lpha})=rac{a}{c}$ und $tan(\pmb{\gamma})=rac{c}{a}.$

Auf Verkehrsschildern wird bei besonders steilen Straßen die Steigung in "%" angegeben. Sie entspricht dem Verhältnis von vertikalem zu horizontalem Weg.

