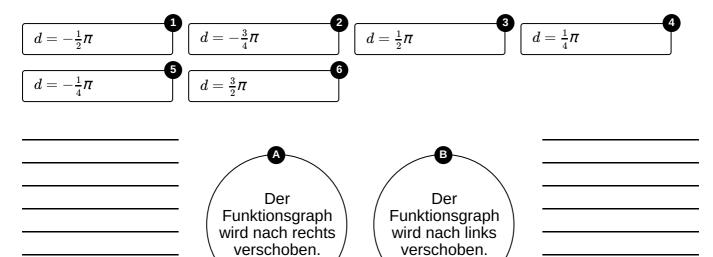


Arbeitsblätter zum Ausdrucken von sofatutor.com

Parameter d bei der Sinusfunktion


(1)	Funktionsgleichung $f(x) = \sin(x-d)$
2	Beschreibe den Einfluss des Parameters d auf die Sinusfunktion.
3	Beschreibe den Einfluss des Parameters d auf die Sinusfunktion.
4	Bilde die Funktionsgleichungen anhand der Wertetabellen.
5	Ermittle die richtigen Funktionsgleichungen der angegebenen Sinuskurven.
6	Ermittle die Parameter der Funktionsgleichungen für die vorgegebenen Graphen.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege gibt es für alle Abonnenten von sofatutor.com

Bestimme die Veränderung des Graphen in Abhängigkeit des Parameters d in der Funktionsgleichung $f(x) = \sin(x-d)$.

Ordne die verschiedenen Werte von d ihren Auswirkungen zu.

Unsere Tipps für die Aufgaben

Bestimme die Veränderung des Graphen in Abhängigkeit des Parameters d in der Funktionsgleichung $f(x)=\sin(x-d)$.

1. Tipp

Der Parameter d verändert den Wert, von dem du den Sinuswert bestimmst.

2. Tipp

Mache dir vielleicht ein paar Wertetabellen mit den einzelnen Werten.

So kannst du sehen, wie sich die Funktionsgraphen verschieben.

3. Tipp

Für d>0 wird die Sinuskurve entlang der x-Achse nach rechts verschoben.

Lösungen und Lösungswege für die Aufgaben

Bestimme die Veränderung des Graphen in Abhängigkeit des Parameters d in der Funktionsgleichung $f(x)=\sin(x-d)$.

Lösungsschlüssel: A: 3, 4, 6 // B: 1, 2, 5

Wir bilden zu den Werten die Wertetabellen und sehen so, in welche Richtungen die Graphen verschoben wurden

Zu dem Wert $d=\frac{1}{2}\pi$ erhalten wir die Wertetabelle, indem wir die typischen Werte für x einsetzen, d abziehen und dann die Sinuswerte berechnen. Die Wertetabelle sieht folgendermaßen aus:

Wir sehen, dass der Funktionsgraph nun bei x=0 seinen niedrigsten Wert hat. Da dieses lokale Minimum aber sonst bei $x=-\frac{1}{2}\pi$ ist, muss die Funktion um $\frac{1}{2}\pi$ nach rechts verschoben sein. Der Wert $d=\frac{1}{2}\pi$ gehört also zu der Aussage "Der Funktionsgraph wird nach rechts verschoben."

Wir überprüfen dies auch für $d=-rac{1}{2}\pi$ und stellen zunächst wieder die Wertetabelle auf

Hier wird deutlich, dass sich das lokale Maximum bei $x=\frac{1}{2}\pi$ nach links verschoben hat zu x=0. Der Wert $d=-\frac{1}{2}\pi$ gehört also zu der Aussage " *Der Funktionsgraph wird nach links verschoben.* "

Analog können wir das für alle anderen Werte überprüfen und erhalten:

- ullet Der Wert $d=-rac{3}{4}\pi$ gehört also zu der Aussage " Der Funktionsgraph wird nach links verschoben. "
- ullet Der Wert $d=-rac{1}{4}\pi$ gehört also zu der Aussage " ${\it Der Funktionsgraph\ wird\ nach\ links\ verschoben. "}$
- ullet Der Wert $d=rac{3}{2}\pi$ gehört also zu der Aussage " *Der Funktionsgraph wird nach rechts verschoben.* "
- ullet Der Wert $d=rac{1}{4}\pi$ gehört also zu der Aussage " *Der Funktionsgraph wird nach rechts verschoben.* "

