


Arbeitsblätter zum Ausdrucken von sofatutor.com

## Parameter a bei der Sinusfunktion

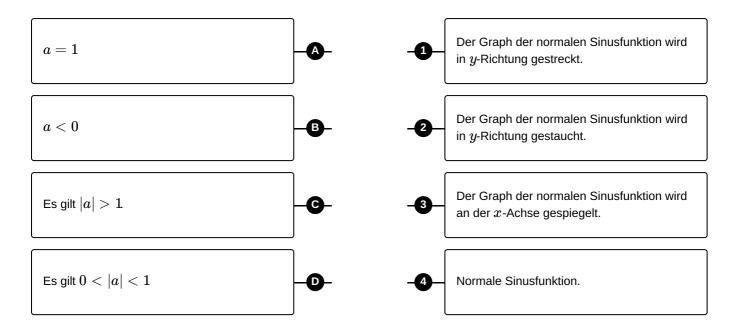


| 1 | Gib die Veränderung des Graphen in Abhängigkeit von $\boldsymbol{a}$ an.                   |
|---|--------------------------------------------------------------------------------------------|
| 2 | Beschreibe den Einfluss des Parameters $\boldsymbol{a}$ auf den Graphen der Sinusfunktion. |
| 3 | Bestimme, welche Aussagen über den Parameter $\boldsymbol{a}$ richtig sind.                |
| 4 | Ermittle die Funktionsgleichungen zu den Wertetabellen.                                    |
| 5 | Leite die Funktionsgleichung mit dem richtigen Parameter her.                              |
| 6 | Ermittle die passenden Parameter.                                                          |
| + | mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben                     |



Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege



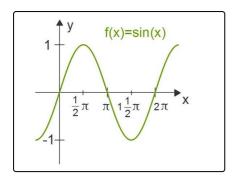





## Gib die Veränderung des Graphen in Abhängigkeit von $\boldsymbol{a}$ an.

Verbinde die Parameter mit dem entsprechenden Verlauf des Funktionsgraphen.

Wir betrachten die Funktion  $f(x) = a \cdot \sin(x)$ 




# Unsere Tipps für die Aufgaben



## Gib die Veränderung des Graphen in Abhängigkeit von $\boldsymbol{a}$ an.

#### 1. Tipp



Hier siehst du den Verlauf einer normalen Sinusfunktion.

#### 2. Tipp

Vergiss nicht, dass ein Betrag nicht negativ sein kann.

Es gilt |b|=|-b|=b, oder in einem Beispiel ausgedrückt |-2|=|2|=2.



### Lösungen und Lösungswege für die Aufgaben



## Gib die Veränderung des Graphen in Abhängigkeit von $\boldsymbol{a}$ an.

**Lösungsschlüssel:** A—4 // B—3 // C—1 // D—2

Wir betrachten jedes Paar einzeln.

- 1. Wenn wir nun a=1 einsetzen, wird die Funktion zu  $f(x)=a\cdot\sin(x)=1\cdot\sin(x)=\sin(x)$ . Das entspricht der normalen Sinusfunktion. Das erste Paar ist also  $a=1\Leftrightarrow$  "Normale Sinusfunktion."
- 2. Wenn wir in die Funktion a<0 einsetzen, werden die Vorzeichen der Funktionswerte einer normalen Sinusfunktion umgedreht. So wird zum Beispiel die Gleichung  $\sin(\frac{1}{2}\pi)=1$  zu
- $-1\cdot\sin(\frac{1}{2}\pi)=-1\cdot 1=-1$ . Die normale Sinusfunktion wird also an der x-Achse gespiegelt. Damit ist das zweite Paar  $a<0\Leftrightarrow$  "Der Graph der normalen Sinusfunktion wird an der x-Achse gespiegelt."
- 3. Wenn wir in der Funktion  $f(x)=a\cdot\sin(x)$  die Variable |a|>1 einsetzen, werden die Funktionswerte der normalen Sinusfunktion selbst im Betrag größer. So wird also zum Beispiel  $\sin(\frac{1}{2}\pi)=1$  zu
- $2\cdot\sin(\frac{1}{2}\pi)=2\cdot 1=2$  und  $\sin(\frac{3}{2}\pi)=-1$  wird zu  $2\cdot\sin(\frac{3}{2}\pi)=2\cdot(-1)=-2$ . Die normale Sinusfunktion wird also in y-Richtung gestreckt. So ist das dritte Paar  $|a|>1\Leftrightarrow$  "Die normale Sinusfunktion wird in y-Richtung gestreckt ".
- 4. Wenn wir nun 0<|a|<1 in die Funktion  $f(x)=a\cdot\sin(x)$  einsetzen, bekommen wir kleinere Amplituden, als bei der normalen Sinusfunktion. Wir nehmen für a zum Beispiel  $a=\frac{1}{2}$ . So wird  $\sin(\frac{1}{2}\pi)=1$  zu  $\frac{1}{2}\cdot\sin(\frac{1}{2}\pi)=\frac{1}{2}\cdot1=\frac{1}{2}$ . Die normale Sinusfunktion wird also in y-Richtung gestaucht. So ist das letzte Paar  $0<|a|<1\Leftrightarrow$  "Die normale Sinusfunktion wird in y-Richtung gestaucht".

