

Löslichkeitsprodukt

1	Formuliere die Gleichgewichtreaktionen und gib die Einheit des Löslichkeitsprodukts an.
2	Definiere die Begriffe Löslichkeitsprodukt und gesättigte Lösung.
3	Stelle das Massenwirkungsgesetz für den Lösevorgang von Natriumchlorid auf.
4	Bestimme die Einheiten des Löslichkeitsprodukts folgender Substanzen.
5	Berechne die Masse an Silberiodid, die in einem Liter Wasser löslich ist.
6	Prüfe, ob das Trinkwasser die Ansprüche bezüglich der Sulfat-Ionenkonzentration erfüllt.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, **inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege** gibt es für alle Abonnenten von sofatutor.com

1 von 6

Formuliere die Gleichgewichtreaktionen und gib die Einheit des Löslichkeitsprodukts an.

Schreibe die richtigen Ionen und Einheiten in die Lücken.

$$oxed{Ca^+(aq)}$$
 2 8 $oxed{Ca^{2+}(aq)}$ $oxed{mol/l}$ $oxed{Na^+(aq)}$ $oxed{S^-(aq)}$

$$oxed{mol^2/l^2} oxed{mol^4/l^4} oxed{As^{3+}(aq)} oxed{S^{2-}(aq)} oxed{As^{4+}(aq)} oxed{mol^5/l^5} oxed{3}$$

 $\boxed{mol^3/l^3}$

1	• NaCl⇌	\dots + $Cl^-(aq)$
	ullet Einheit:	<u>2</u>

• Einheit:_______

• Einheit:

Unsere Tipps für die Aufgaben

Formuliere die Gleichgewichtreaktionen und gib die Einheit des Löslichkeitsprodukts an.

1. Tipp

Eine Ionensubstanz mit der allgemeinen A_mB_n dissoziiert in $m\cdot A^{a+}{}_{(aq)}$ -Kationen und $n\cdot B^{b-}{}_{(aq)}$ -Anionen.

2. Tipp

Das Löslichkeitsprodukt berechnet sich als Produkt der Konzentrationen aller hydratisierten Ionen. Beachte dabei die stöchiometrischen Faktoren \mathbf{m} und \mathbf{n} .

Lösungen und Lösungswege für die Aufgaben

Formuliere die Gleichgewichtreaktionen und gib die Einheit des Löslichkeitsprodukts an.

Lösungsschlüssel: 1: $Na^+(aq)$ // 2: mol^2/l^2 // 3: $Ca^{2+}(aq)$ // 4: 2 // 5: mol^3/l^3 // 6: $As^{3+}(aq)$ // 7: 3 // 8: $S^{2-}(aq)$ // 9: mol^5/l^5

$$[K_L] = mol^{n+m}/\ l^{n+m}$$

Das Löslichkeitsprodukt ist das Produkt der Konzentrationen der hydratisierten Ionen. Die Anionen und Kationen stehen dabei aber nicht immer im Verhältnis 1:1, wie bei NaCl.

Calciumfluorid (CaF_2) zum Beispiel dissoziiert in **ein** Calcium-Kation und **zwei** Fluorid-Anionen.

•
$$CaF_2 \rightleftharpoons Ca^{2+}(aq) + 2 \cdot F^{-}(aq)$$

Auf den allgemeinen Ausdruck A_mB_n bezogen, ist im Falle von $CaF_2\ m=1$ und n=2. Laut der Formel für das Löslichkeitsprodukt ist dessen Einheit also abhängig von m und n der Anzahl der hydratisierten Japan. Die Einheit kann demasch wie folgt berechnet

 CaF_2 m=1 und n=2. Lauf der Formei für das Löslichkeitsprodukt ist dessen Einneit also abnangig von m und n, d.h. der Anzahl der hydratisierten Ionen. Die Einheit kann demnach wie folgt berechnet werden.

•
$$[K_L]$$
 = mol^{n+m}/l^{n+m}

Die Einheit des Löslichkeitsproduktes für die Dissoziation von Calciumfluorid ist somit $mol^3 \ / \ l^3$.

