

Arbeitsblätter zum Ausdrucken von sofatutor.com

Definition der Redoxreaktion als Elektronenübertragung

(1)	Vervollständige die Abbildung.
2	Bestimme die Rollen der Reaktionspartner in einer Redoxreaktion.
3	Beschreibe, wie sich die Definition der Redoxreaktion im Laufe der Zeit verändert hat.
4	Definiere die Fachbegriffe einer Redoxreaktion.
5	Kennzeichne die Oxidation, die Reduktion sowie den Elektronendonator und den Elektronenakzeptor.
6	Vergleiche die Begriffe "Elektronendonator" und "Elektronenakzeptor" miteinander.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, **inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege** gibt es für alle Abonnenten von sofatutor.com

Vervollständige die Abbildung.

Fülle die Lücken mit den richtigen Begriffen.

Redoxreaktion: Protonenübertragung Oxidation: E

Elektronenübertragung

Reduktion:

Redoxreaktion = 1

 \longrightarrow C⁴⁺ + 4e⁻

 $_{3}:2 \text{ Cu}^{2+} + 4 \text{ e}^{-} \longrightarrow 2 \text{ Cu}$

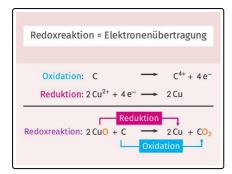
 $_{4}: 2 CuO + C \longrightarrow 2 Cu + CO_{2}$

Unsere Tipps für die Aufgaben

Vervollständige die Abbildung.

1. Tipp

Die Oxidation ist die Elektronenabgabe.



Lösungen und Lösungswege für die Aufgaben

Vervollständige die Abbildung.

Lösungsschlüssel: 1: Elektronenübertragung // 2: Oxidation: // 3: Reduktion: // 4: Redoxreaktion:

Allgemein ist eine Redoxreaktion als **Elektronenübertragung** definiert.

Die Teilreaktionen, **Oxidation** als Elektronenabgabe und **Reduktion** als Elektronenaufnahme, werden oft getrennt voneinander betrachtet.

In diesem Beispiel wird Kohlenstoff **oxidiert** und Kupferoxid wird zu Kupfer **reduziert**.

